
Algorithmic Acceleration of
Computing Performance

Professor Xiaodong Zhang

Although loading a program to run on a
computer might only require a few clicks
from the user, there is a complex cascade of
processes that are occurring while you wait.
Your input from the mouse or a touch screen
sends an electrical signal that is received by
the computer’s central processing unit (CPU).
The CPU is like the computers ‘brain’, that
allows it to respond to inputs, like mouse
clicks, and executes the lines of code that
make up a computer program. However,
when you are trying to run a computer
program and open its related data files, the
code and data need to be stored somewhere,
which is typically on the hard drive of the
computer. This means that the CPU needs
to access the data on the hard drive and find
the correct program before it can even start
running the program itself.

To run the program, a copy of the program
and necessary data are first loaded into the
main memory or DRAM (Dynamic Random
Access Memory). Unlike a hard drive, where

data is stored permanently, DRAM is a type
of temporary storage. If you reboot your
computer, then any data that is stored in the
DRAM will be lost. The reason DRAM is used
to store a copy of the program is because it
is significantly faster to read from and write
to DRAM compared with hard drive storage,
ultimately meaning your program will run
much more smoothly.

Every step in running a program requires
communication between, and access to,
several different kinds of memory in a
hierarchy from fast to slow. Your operating
system, be it Windows, Linux, OS X or
Android, is continuously running on the CPU
and helps to not only provide an interface for
you to interact with but to translate various
commands to and from the CPU and various
parts of memory. It also tries to manage the
overall memory usage of the computer.

ALGORITHMIC ACCELERATION
OF COMPUTING PERFORMANCE
The endless quest for making faster, more powerful computers is
not just about investing in advanced hardware. By developing more
efficient algorithms, Professor Xiaodong Zhang’s work has successfully
revolutionised the design of fundamental computer components. By
building upon basic computer science research on memory management
processes, Professor Zhang has played a key role in improving overall
computer system performance, not just for individual personal computers
but also large computer clusters for data management systems.

W W W . SCIENTIA.GLOBAL

Loading, Please Wait…

The continual ‘back and forth’ of commands
between the CPU, hard disk and DRAM
means that there are various stages at
which ‘bottlenecks’ can occur, which limit
the overall performance of a computer. For
example, some types of computer programs,
such as graphically-rich video games, are very
‘DRAM intensive’, so even with a significantly
faster CPU, if your DRAM is insufficient, they
may run sluggishly. While these bottlenecks
may occur in individual components, a
more significant and common source of
bottlenecks is delays in the communication
between the various kinds of memory.

One approach to solving this is to increase
the memory capacity and upgrade CPU
speed in the hardware. However, this is costly
in terms of resources and it is becoming
increasingly difficult to keep producing
smaller and smaller transistors for CPUs, due
to complicating factors such as the amount
of heat produced. The most critical issue is to
maximise every bit of potential of hardware
by the power of algorithms. Where Professor
Zhang and his research team excel is in
finding different algorithms to optimise many
of these ‘memory management’ processes.
This ultimately means that you can see
faster system performance using the same
specification components by finding ways to
make their operation or the communication
between components more efficient.

W W W . SCIENTIA.GLOBAL

Reducing Conflict to Accelerate
Memory Access

Every communication process, or attempt
to read or write data from memory, has a
certain probability of causing an error. There
can also be inefficiencies caused by the order
in which data is written to and read from
memory.

For modern DRAM systems, one of the
biggest inefficiencies is caused by row-buffer
conflicts. In order to speed up memory
access, the memory is divided into different
‘banks’, each of which contains multiple
‘pages’, a standard data unit, e.g. 8192 Bytes.
Each bank has an associated row-buffer,
which keeps data in memory so it can be re-
accessed to speed up processing times.

However, sometimes an event called a ‘row
buffer conflict’ occurs, which leads to a
substantial delay in memory access. This is
when there is an attempt to access a page
while another page is already open in the
row-buffer. To address this, Professor Zhang,
with two of his former PhD students (Zhao
Zhang and Zhichun Zhu, who are both now
professors at the University of Illinois at
Chicago) developed an algorithm known as

‘permutation-based page interleaving’ that
significantly reduces the likelihood of these
row-buffer conflict events.

Use of Professor Zhang’s new algorithm has
reduced memory access time significantly.
This method has proved so useful that it has
been adopted in almost all the general-
purpose microprocessor products, originally
by Sun Microsystems, and later by AMD,
Intel and NVIDIA. It is now considered part
of the conventional design of the memory
controllers that make up the microprocessors
to form the CPU.

To Keep or to Evict?

In any computer system, there are several
layers of data buffers known as ‘caches’ in
a hierarchy, used to store information the
CPU is likely to need, reducing the time taken
to access data from the next level of the
memory hierarchy. For example, accessing
data in CPU caches is much faster than in the
main memory, and this trend continues until
the last level of the hard disk is reached.

The question is, how do you identify
what data is likely to be used often and
what should be cached in order to speed

up processing? This is normally done
algorithmically, where the data is removed
from the cache based on which data was
‘least recently used’ (LRU). However, now
Professor Zhang, along with another former
PhD student, Song Jiang (now a professor
at the University of Texas, Arlington) have
co-developed the Low Inter-reference
Recency Set (LIRS) caching algorithm. This
algorithm, and its approximation, have
been widely adopted in major software
products, including BSD and Linux operating
systems, MySQL and H2 databases, Infinispan
distributed systems, and other production
systems.

Although LIRS may seem more complicated
than the traditional LRU algorithm, it is
a particularly effective method for data
management in databases, operating
systems, and data centres, because rather
than just looking at when a specific page
was accessed, it considers its reuse in a time
interval, which is called ‘reuse distance’.
Pages with short reuse distance are cached,
improving the likelihood of caching the most
useful data for improving performance.

‘Data accessing speed to the main memory is a critical factor for
computer system performance. By translating basic research

into advanced technologies, we have been able to have a huge
impact of the development of the both the hardware and

software components of computer systems.’

Storage Capacity (increasing)

Solid state disk or/and
Non-volatile memory device

Hard disks

Big Data Processing

‘Big data’ has been one of the most rapidly
growing areas in society over recent years.
Big data refers to such large and complex
data sets that conventional data analysis
tools simply cannot deal with them.
However, despite these challenges, there has
been such an explosion of interest in this field
as it can offer important insights into a whole
range of fields, including healthcare issues in
the population and even predicting electoral
outcomes.

Whereas standard PC hard drives often have
around 1 Terabyte of storage space, this type
of data set can be in excess of hundreds of
terabytes. However, it is not just storing large
volumes of data that poses a significant
challenge – in order for this data to truly be
useful, it needs to be rapidly accessible for
analysis.

Conventional databases often store data in
either a row or column store format. Row-
store format has the advantage of being
faster to load and includes a ‘complete’
dataset by rows in memory for analysis.
However, not all the data elements in a row
are used in practice, causing inefficient usage
of limited storage bandwidth. Column-store
means that any unnecessary or redundant
data is not read into memory, but does
not offer the same advantage of being a
‘complete’ data set. In addition, operations
among distributed columns in different
nodes require network communications.

Professor Zhang, in collaboration with

W W W . SCIENTIA.GLOBAL

research scientist Rubao Lee, former
PhD students Yin Huai (now working at
DataBricks) and Yuan Yuan (now working
at Google), and several Facebook software
engineers have designed and implemented
a new type of data structure called Record
Columnar File (RCFile) and its optimised
version (ORC) that allows significantly
faster memory access. With this hybrid
structure containing both columns and
rows, RCFIle and ORC retain the merits of
both column-store and row-store methods,
but minimise their limits. This has become
the standard data storage format for large
scale data processing systems, such as
Hive (Hortenworks), Presto (Facebook),
and Impala (Cloudera), but has also been
adopted by major database vendors of IBM,
Microsoft, Oracle, SAS, and Teradata for their
commercial database products.

Algorithm Drives for Image and Graphics
Processing

Generating computer graphics is typically
one of the most demanding computational
operations. When you are playing a video
game, what you are actually seeing is
shapes made up of polygons, rendered in
different colours. As graphics have become
increasingly realistic over the years, this
means far higher polygon counts, which
means more data to process and keep in
memory.

Now, there is a great deal of interest in being
able to visually represent the large datasets
typical of the big data era. This makes use of
the same polygon building blocks that make

up video game graphics, but the size and
complexity of what needs to be visualised
often means that several layers of these
polygons need to be used to reconstruct
things like 3-D maps or automate diagnosis
of medical conditions from images or scan
data.

While graphical processing units (GPUs) are
optimised for dealing with these types of
processes, Professor Zhang, alongside former
PhD students Kaibo Wang (now working at
Google), Yin Huai, research scientist Rubao
Lee, and two faculty members in Emory
University, have found an algorithmic
approach to greatly speed up these complex
polygon overlay operations. This algorithm is
known as PixelBox and has been adopted in
the Geometric Performance Primitives (GPP)
Library – an industry-leading and high speed
computational geometry engine. GPP has
also been included in the GPU-Accelerated
libraries of the NVIDIA Company.

Future Directions

With data sets becoming ever larger, building
powerful supercomputers for analysis is no
longer an effective and affordable answer.
Much of Professor Zhang’s recent work
involves ‘distributed computing’. Rather than
having one solitary powerful computer to
run a big task, in a distributed computing
arrangement, this task is split over multiple
computers so the workload is shared and it is
completed more efficiently in a cost-effective
way.

However, there are significantly more
memory management issues and other
hardware challenges due to the rapid
advancement of high performance devices,
such as Graphics Processing Unit (GPU),
Field-Programmable Gate Array (FPGA),
Solid State Devices (SSD), and Non-Volatile
Memory (NVM), when dealing with an entire
network of computers rather than just one,
and there is a need to design algorithms
that exploit the unique capabilities of
running distributed computing. Professor
Zhang, alongside his group at The Ohio
State University, will continue to spearhead
the development of new algorithms and
of an inclusive software environment for
heterogeneous hardware devices to ensure
this happens.

Meet the researcher

Professor Xiaodong Zhang graduated with a PhD in Computer
Science from University of Colorado at Boulder, where he received
a Distinguished Engineering Alumni Award in 2011. He is currently
the Robert M. Critchfield Professor in Engineering and Chair of the
Computer Science and Engineering Department at The Ohio State
University. Professor Zhang has made significant contributions
to the fields of computer memory systems and data and memory
management in distributed systems, for which he was named as
IEEE Fellow (Institute of Electronics and Electrical Engineers) in 2009
and ACM Fellow (Association for Computing Machinery) in 2012. His
research focus has been on finding ways to translate basic computer
science research into high-impact technologies, and much of this
work has been contributed to the public domain through open-source
software and published papers.

CONTACT

E: zhang@cse.ohio-state.edu
T: (+1) 614 292 2770
W: http://web.cse.ohio-state.edu/~zhang/

REFERENCES

Y Huai, S Ma, R Lee, O O’Malley, X Zhang, Understanding Insights into
the Basic Structure and Essential Issues of Table Placement Methods
in Clusters, Journal Proceedings of the VLDB Endowment, 2013, 6,
1750–1761.

K Wang, Y Huai, R Lee, F Wang, X Zhang, JH Saltz, Accelerating
Pathology Image Data Cross-Comparison on CPU-GPU Hybrid Systems,
Journal Proceedings of the VLDB Endowment, 2012, 5, 1543–1554.

Y He, R Lee, Y Huai, Z Shao, N Jain, X Zhang, Z Xu, RCFile: A Fast and
Space-efficient Data Placement Structure in MapReduce-based
Warehouse Systems, 2011 IEEE 27th International Conference on Data
Engineering (ICDE), 2011, 1199–1208.

S Jiang, F Chen, X Zhang, CLOCK-Pro: An Effective Improvement of the
CLOCK Replacement, Proceeding ATC’05 Proceedings of the annual
conference on USENIX Annual Technical Conference, 2005, 35–55.

S Jiang, X Zhang, LIRS: An Efficient Low Inter-reference Recency Set
Replacement Policy to Improve Buffer Cache Performance, SIGMETRICS
‘02 Proceedings of the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, 2002, 31–42.

Z Zhang, Z Zhu, X Zhang, A Permutation-based Page Interleaving
scheme to Reduce Row-buffer Conflicts and Exploit Data Locality,
Micro’33 Proceedings of the 33rd Annual ACM/IEEE International
Symposium on Microarchitecture, 2000, 32–41.

Professor Xiaodong Zhang
Computer Science and Engineering Department

Ohio State University
Columbus

USA

W W W . SCIENTIA.GLOBAL

